Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Molecules ; 27(5)2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1742555

ABSTRACT

This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis.


Subject(s)
Halogens
2.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1288904

ABSTRACT

The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile.


Subject(s)
Antiviral Agents/chemistry , Quercetin/chemistry , SARS-CoV-2/metabolism , Selenium/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Chlorocebus aethiops , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Quercetin/metabolism , Quercetin/pharmacology , SARS-CoV-2/isolation & purification , Selenium/metabolism , Vero Cells , Viral Matrix Proteins/metabolism , Virus Replication/drug effects
3.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 26.
Article in English | MEDLINE | ID: covidwho-828288

ABSTRACT

In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.

SELECTION OF CITATIONS
SEARCH DETAIL